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9 Polarization and Depolarization of Light

M.I. Mishchenko and L.D. Travis

NASA Goddard Institute for Space Studies,
2880 Brodway, New York, New York 10025, U.S.A.

Abstract. Electromagnetic scattering by a small particle or a collection of small
particles can produce light with polarization characteristics different from those of
the incident beam. If the incident beam is unpolarized, the scattered light generally
has at least one nonzero Stokes parameter other than intensity, and this phenome-
non is often called ”polarization.” When the incident beam if fully linearly or circu-
larly polarized, the scattered light may become partially polarized or even totally
unpolarized, and this phenomenon is called ”depolarization.” In this paper we use
exact solutions of Maxwell’s equations and the vector radiative transfer equation to
study the dependence of polarization and depolarization on such characteristics of
scattering particles as size, refractive index, and shape. We also discuss the use of
polarization and depolarization phenomena in remote sensing studies and particle
characterization.

1 Introduction

The polarization state of a beam of light is traditionally described by a vector
I = (I, Q, U, V )T composed of four Stokes parameters (T means transpose).
The first Stokes parameter, I, is the intensity, while the other three para-
meters describe the polarization state of the beam. The Stokes parameters
are always defined with respect to a reference plane, e.g., with respect to the
meridional plane of the beam in a spherical coordinate system (Fig. 1):

I = EϑE∗
ϑ + EϕE∗

ϕ, (1)

Q = EϑE∗
ϑ − EϕE∗

ϕ, (2)

U = −EϑE∗
ϕ − EϕE∗

ϑ, (3)

V = i(EϕE∗
ϑ − EϑE∗

ϕ), (4)

where Eϑ and Eϕ are electric field components and the asterisk denotes a
complex conjugate value [1]. The scattering of a beam of light by a single
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160 M.I. Mishchenko and L.D. Travis

particle or a collection of particles is fully characterized by a 4x4 matrix F
(often called the Mueller matrix) which describes the transformation of the
Stokes vector of the incident beam into the Stokes vector of the scattered
beam.

Fig. 1. Spherical coordinate system used to define the Stokes parametres of a beam
of light propagating in the direction specified by the unit vector n.

Isca = FIinc. (5)

Electromagnetic scattering most typically produces light with polariza-
tion characteristics different from those of the incident beam. If the incident
beam is unpolarized, the scattered light generally has at least one nonzero
Stokes parameter other than intensity, and this phenomenon is often called
”polarization.” When the incident beam is fully linearly (I = Q, U = V = 0)
or circularly (I = V, Q = U = 0) polarized, the scattered light may become
partially polarized or even totally unpolarized, and this phenomenon is cal-
led ”depolarization.” Polarization and depolarization can be caused by both
single and multiple scattering and depend on geometrical and physical cha-
racteristics of the scattering particle(s) such as shape, morphology, refractive
index, size parameter (ratio of the particle circumference to the wavelength
of the incident light), and orientation with respect to the coordinate system.

In this paper we analyze polarization and depolarization mechanisms for
single scatterers and multi-particle configurations using exact numerical so-
lutions of Maxwell’s equations and the vector radiative transfer equation. We
also discuss how the strong sensitivity of polarization and depolarization to
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particle parameters makes both phenomena a powerful tool in remote sensing
studies and particle characterization.

2 Single Scattering

Consider single scattering by a small-volume element composed of a collection
of sparsely distributed, independently scattering particles (see the following
section for a discussion of what interparticle separation makes the particles
independent scatterers). For simplicity, we will assume that the incident beam
is directed along the z axis and consider scattering in the xz plane. In this case
the xz plane is also the scattering plane and the zenith angle of the scattered
beam ϑ is also the scattering angle, Θ. If the particles comprising the small-
volume element are randomly oriented and have a plane of symmetry, the
Mueller matrix has the well-known, simplified block-diagonal structure, [2].

F(Θ) =




F11 F12 0 0
F12 F22 0 0
0 0 F33 F34
0 0 −F34 F44


 , (6)

and has only six independent elements. It is easily seen from (5) and (6) that
the Stokes vector of the scattered light is given by

Isca =




F11I
inc + F12Q

inc

F12I
inc + F22Q

inc

F33U
inc + F34V

inc

−F34U
inc + F44V

inc


 (7)

and, in general, differs from Iinc. Even if the incident beam is unpolarized,
i.e., Iinc = (I, 0, 0, 0)T , the scattered beam has a nonzero Stokes parameter
Q, unless the (1,2) element of the Mueller matrix is equal to zero. [The latter
is always true in the exact forward (Θ = 0) and exact backward (Θ = π)
directions.] This phenomenon is usually called polarization.

Figure 2 shows the phase function defined as

p(Θ) = 2F11(Θ)/

π∫

0

F11(Θ′) sinΘ′dΘ′ (8)

and the normalized Mueller matrix elements for a power law size distribu-
tion of spheres and surface-equivalent, randomly oriented oblate spheroids [3]
with an aspect ratio of 1.7. The refractive index is 1.53+0.008i and the ef-
fective size parameter of the size distribution, χeff , is 15. The computations
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were performed using the conventional Lorenz-Mie theory for spheres [2] and
the T-matrix method for spheroids [3]. There are several obvious differences
between the Mueller matrix elements for spheres and spheroids. The phase
function for spheroids exhibits an enhanced side-scattering and a suppressed
backscattering. The (1,1) and (2,2) elements for spheres are the same, whereas
for spheroids they are significantly different. The same is true for the (3,3)
and (4,4) elements. The degree of linear polarization −F12/F11 for spheroids
is positive at side-scattering angles and is negative for spheres. We thus see
that the elements of the Mueller matrix are highly sensitive to particle shape.
Figures 3 and 4 as well as extensive computations reported by Hansen and
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Fig. 2. Phase function and normalized Mueller matrix elements for a power law
size distribution of spheres and randomly oriented spheroids. The refractive index
is 1.53+0.008i and the effective size parameter of the size distribution is 15.

Travis [4], Mishchenko and Travis [5], Mishchenko et al. [3], and Mishchenko
and Travis [6] show that they are equally sensitive to the particle refractive
index and size parameter. This sensitivity makes accurate measurements of
the Mueller matrix a valuable means of particle characterization.

In the exact backscattering direction, the Mueller matrix becomes diago-
nal and has only two independent elements [7]:

F(π) = diag[F11(π), F22(π),−F22(π), F11(π) − 2F22(π)]. (9)

Assume now that the incident beam is 100% linearly polarized parallel
to the scattering plane so that Iinc = Iinc(1, 1, 0, 0)T . The second Stokes
parameter of the backscattered signal is not, in general, equal to the first
Stokes parameter and this phenomenon is traditionally called linear depo-
larization. The linear depolarization ratio, i.e., the ratio of the flux of the
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Fig. 3. Phase function and normalized Mueller matrix elements for a narrow gamma
size distribution of spheres. The refractive index is 1.45 and the effective size para-
meter of the size distribution varies from 1 to 20.
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Fig. 4. As in Fig. 3, but for a fixed effective size parameter of 10 and refractive
index m varying from 1.3 to 1.6.

cross-polarized component of the backscattered light relative to that of the
co-polarized component, can be written as [see (9)]

δL =
Isca − Qsca

Isca + Qsca
=

F11(π) − F22(π)
F11(π) + F22(π)

. (10)

Similarly, we can consider a fully circularly polarized incident beam with
Stokes parameters Iinc(1, 0, 0, 1)T to define the circular depolarization ratio
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δC =
Isca + V sca

Isca − V sca
=

F11(π) + F44(π)
F11(π) − F44(π)

=
F11(π) − F22(π)

F22(π)
. (11)

It is straightforward to show that there is a direct relationship between
the linear and circular depolarization ratios [cf. (10) and (11)]:

δC = 2δL/(1 − δL). (12)

Spherically symmetric particles produce zero depolarization since in this
case F11(π) = F22(π) [2]. For particles without spherical symmetry, the latter
equality does not generally hold and such particles can depolarize backscat-
tered light. This explains why the linear and circular depolarization ratios
can be direct indicators of particle nonsphericity. It is readily verified [7] that
δL never exceeds 1 and

0 ≤ 2δL ≤ δC ≤ ∞. (13)

Figure 5 shows the results of T-matrix computations of the linear depola-
rization ratio for a power law size distribution of randomly oriented nonsphe-
rical particles with a refractive index of 1.311 [8]. For spheroids, ε is the ratio
of the largest to the smallest semi-axes. The shapes of prolate and oblate
cylinders are specified by length-to-diameter and diameter-to-length ratios,
respectively. The shape of second-order Chebyshev particles in a spherical
coordinate system is described by the equation R(ϑ, ϕ) = R0(1 + εcos2ϑ),
where ε is a deformation parameter specifying the maximal deviation of the
particle shape from that of a sphere with radius R0 [9].

Figure 5 demonstrates that an interesting feature of the linear depola-
rization ratio for essentially all shapes considered is a rapid increase with
increasing effective size parameter from 0 to about 5. Furthermore, maximal
δL values for most shapes are observed at effective size parameters close to
and sometimes smaller than 10. Since geometric optics concepts of rays, re-
flections, and refractions are inapplicable to wavelength and sub-wavelength
sized particles, our computations suggest that multiple internal reflections in
very large particles, as discussed by Liou and Lahore [10], are not the only
mechanism of producing depolarization and not necessarily the mechanism
producing maximal δL values. For example, the peak δL value for polydisperse
prolate spheroids with ε = 1.2 is close to 0.7 and is reached at χeff as small
as 12.5. Also, geometric optics predicts size-parameter-independent depola-
rization ratios for nonabsorbing particles, whereas exact T-matrix computa-
tions for monodisperse scatterers show strong oscillations of δL with varying
particle size [7]. It thus appears that resonance effects in small nonspheri-
cal particles can be an efficient alternative mechanism of producing strong
depolarization.
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Fig. 5. Linear depolarization ratio versus effective size parameter for polydisperse,
randomly oriented particles of different shapes. The refractive index is 1.311.

The computations also show that although nonzero depolarization values
directly indicate the presence of nonspherical particles, there is no simple
relationship between δL and the degree of particle asphericity (i.e., ratio of
the largest to the smallest particle dimensions). Even spheroids with ε as
small as 1.05 (2.5% deviation from the perfect spherical shape) and Chebys-
hev particles with |ε| as small as 0.02 already produce strong depolarization.
The largest δL values are produced by prolate spheroids with aspect ratio
as small as 1.2 and Chebyshev particles with ε as small as 0.08-0.10 (8-10%
deviation from a sphere). Furthermore, δL for spheroids and, especially, cy-
linders seems to saturate with increasing aspect ratio. Also of interest is that
smooth scatterers (spheroids and Chebyshev particles) produce depolariza-
tion ratios comparable to and even exceeding those for sharp-edged cylinders.



166 M.I. Mishchenko and L.D. Travis

3 Multiple Scattering

Cooperative effects in multi-particle configurations can significantly modify
the process of polarization and depolarization. In particular, it appears that
polarization is an intrinsically single-scattering phenomenon which can be
significantly attenuated by multiple scattering. On the other hand, coopera-
tive effects cause nonzero depolarization values even for clusters consisting
of spherical particles and often reinforce depolarization caused by particle
nonsphericity.
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Fig. 6. Phase function and normalized elements of the Mueller matrix for randomly
oriented bispheres with touching and separated components.

We will demonstrate this by considering the simplest configuration com-
posed of two identical spheres with touching or separated components. Figure
6 shows the results of T-matrix computations of the phase function and the
normalized elements of the Mueller matrix for randomly oriented bispheres
with an index of refraction of 1.5 + 0.005i [11]. The size parameter of the
component spheres is 5 and the distance D between the sphere centers varies
from twice their radius for touching spheres to eight times their radius for
”widely” separated spheres. For comparison, solid curves show the results of
Lorenz-Mie computations for a single sphere with the same size parameter 5
and represent the case of a bisphere with infinitely separated components. The
oscillations in the single-sphere curves are a manifestation of the interference
structure typical of monodisperse spheres and are traditionally attributed to
interference of light diffracted and refracted/reflected by the particle [4]. It
is obvious that the magnitude of these oscillations decreases as the compo-
nent spheres become closer and is minimal for the bisphere with touching
components. Since the cooperative effects strengthen as the interparticle di-



9 Polarization and Depolarization of Light 167

stance decreases, Fig. 6 unequivocally demonstrates that the most obvious
effect of cooperative effects in multi-particle configurations is to suppress the
single-sphere signature in the elements of the Mueller matrix. In particular,
the degree of linear polarization −F12/F11 becomes more neutral and less
indicative of the physical characteristics of the component spheres.
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Fig. 7. Linear depolarization ratio versus component-sphere size parameter for ran-
domly oriented bispheres with touching components. The refractive index is 1.5 +
0.005i.

The only exception is the ratio F22/F11, which is identically equal to 1
for single spheres but increasingly deviates from 1 with decreasing distance
between the bisphere components. As follows from (10), the deviation of this
ratio from 1 results in increasingly nonzero values of the linear depolarization
ratio. Therefore, we must conclude from (10) and Fig. 6 that although single
spheres do not depolarize light, cooperative effects in multi-sphere aggregates
can produce significant depolarization. Figure 7 shows δL as a function of size
parameter for randomly oriented bispheres with touching components [12]
and demonstrates rather large δL values even for the simplest multi-particle
configuration.

It is interesting to note that as small a distance between the sphere centers
as 4 times their radius makes the bisphere Mueller matrix elements very
close to those of a single sphere (Fig. 6). This result provides an important
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quantitative criterion of what minimal distance between wavelength-sized
particles makes them independent scatterers [12].

Multiple scattering in optically thick discrete random media has similar
effects on polarization and depolarization. For example, Hansen and Travis [4]
use numerically exact adding/doubling computations of polarized radiative
transfer in a plane-parallel atmosphere composed of spherical particles and
show that the polarization signature becomes more neutral and featureless as
the optical thickness of the cloud increases, i.e., when the amount of multiple
scattering grows (Fig. 8). Similarly, they demonstrate that the polarization
feature is most pronounced in the first-order-scattering contribution to the
reflected light and diminishes as more orders of scattering are taken into
account.

Fig. 8. Degree of linear polarization of reflected light, −I/Q(%), integrated over
the disk of a locally-plane-parallel planet uniformly covered with a cloud layer of
varying optical thickness τ and illuminated by an unpolarized beam of light. The
cloud particles are modeled by a narrow gamma size distribution of spheres with an
effective radius of 1 µm and refractive index 1.44. The wavelength of the incident
light is 0.55 µm.

The computation of the depolarization ratios for optically thick discrete
random media is a more complicated problem because the Stokes parame-
ters of light reflected in the vicinity of the exact backscattering direction are
affected by a phenomenon called coherent backscattering or weak photon lo-
calization (e.g., POAN Research Group [13]). This phenomenon is caused by
constructive interference of light travelling along the same multiple-scattering
paths but in opposite directions and is not explicitly described by the radia-
tive transfer equation. However, Mishchenko [14] used the general reciprocity
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principle to prove that the solution of the vector radiative transfer equation
[15,16] can still be used to exactly calculate the coherent backscattering con-
tribution in the strict backscattering direction. Specifically, the total Mueller
matrix in the exact backscattering direction has the structure given by (6)
and can be represented in the form

F = F1 + FL + FC , (14)

where F1 is the first-order-scattering contribution, FL is the incoherent con-
tribution of orders of scattering 2 and higher, and the matrix FC represents
the coherent contribution and is expressed in the matrix FL as follows:

FC
ij = FL

ij , i 6= j, (15)

FC
11 =

1
2
(FL

11 + FL
22 − FL

33 + FL
44), (16)

FC
22 =

1
2
(FL

11 + FL
22 + FL

33 − FL
44), (17)

FC
33 =

1
2
(−FL

11 + FL
22 + FL

33 + FL
44), (18)

FC
44 =

1
2
(FL

11 − FL
22 + FL

33 + FL
44). (19)

Since the matrices F1 and FL can be found by solving numerically the
vector radiative transfer equation, (14)-(19) render the total backscattering
Mueller matrix. Note that the angular width of the coherent backscattering
effect is negligibly small for dilute particle distributions such as clouds, but
is significant for media composed of densely packed particles such as snow or
sand layers.

As an example, Fig. 9 shows the linear depolarization ratio versus cosine
of the angle of incidence µ0 for a semi-infinite medium composed of spheri-
cal particles with an effective size parameter of 10 and refractive indices 1.2
and 1.6 [17]. It is seen that δL is zero in the limit µ0 → 0, i.e., when only
the light scattered once contributes to the total reflected signal. This first-
order-scattering contribution is not depolarized because the particles forming
the medium are assumed to be spherical. However, at normal incidence (µ0
= 1) the multiple-scattering contribution to the total backscattered signal
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Fig. 9. Linear depolarization ratio versus cosine of the angle of incidence for back-
scattering by a semi-infinite homogeneous layer composed of polydisperse spherical
particles with an effective size parameter of 10 and refractive indices 1.2 and 1.6.

is significant and results in strong depolarization. Figure 10 shows even lar-
ger values for the circular depolarization ratio. The numerical computations
suggest that

δL ≤ 1 and δL ≤ δC . (20)

These properties of the depolarization ratios produced by multiple scat-
tering are similar to those of the depolarization ratios caused by single scat-
tering on nonspherical particles (cf. Sect. 2 ). This may make it difficult
in many practical situations to distinguish between the two depolarization
mechanisms.

4 Particle Characterization and Remote Sensing

Figure 11 exemplifies the use of Mueller matrix measurements for particle
characterization and compares experimental data for a single latex sphere at
a wavelength of 441.6 nm [2] and results of Lorenz-Mie computations. The
refractive index of latex is well known (1.588), and it was also known from
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Fig. 10. As in Fig. 9, but for the circular depolarization ratio.

the manufacturer that the diameter of the latex particle was in the 1 µm
range. The best-fit agreement between the measurements and computations
was obtained for a diameter of 1122 nm, while computations for diameters
1108 and 1136 nm showed large discrepancies [11]. Figure 12 shows a simi-
lar example but for a single two-sphere cluster in random orientation. In
this case the best fit was obtained for a component-sphere diameter of 1129
nm and the estimated accuracy of the retrieval was better than 20 nm [11].
These examples demonstrate the potential accuracy of particle sizing based
on polarimetric measurements (see also Hirleman and Bohren [18]).

The strong sensitivity of polarization and depolarization on the physical
characteristics of scattering particles has been widely employed in remote
sensing studies. A classical example is the analysis of ground-based pola-
rimetric observations of Venus which enabled Hansen and Hovenier [19] to
determine the size and chemical composition of Venus cloud particles. This
work was continued by Kawabata et al. [20], Sato et al. [21] and Knibbe et al.
[22], who analyzed polarimetric observations provided by the Pioneer Venus
orbiter. Mishchenko [6] used computations similar to those shown in Figs. 9
and 10 to explain the unusually large depolarization ratios measured at cen-
timeter and decimeter wavelengths for the icy Galilean satellites of Jupiter
[23]. Mishchenko [24] and Rosenbush et al. [25] have interpreted telescopic
polarization observations of Saturn’s rings and icy outer planet satellites in
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Fig. 11. Normalized Mueller matrix elements for a single latex sphere. Solid curves
show measurements by Bottiger et al. [2] and the dotted curves show results of
Lorenz-Mie computations.

terms of the polarization opposition effect produced by coherent backscatte-
ring and estimated the size of ice grains covering the surfaces of these solar
system objects. Mishchenko and Sassen [8] used the computations shown in
Fig. 5 to explain the frequent occurrence of large δL values for very young
aircraft condensation trails (contrails) and concluded that observed increases
of δL with the contrail’s age can be explained either by a rapid increase of
the particle size parameter from less than 1 to about 5 or by assuming that
the contrail particles originate as perfect spheres and then acquire a certain
degree of asphericity. Sassen [26] and Aydin [27] review the use of lidar and
radar backscattering depolarization measurements for characterizing aerosol
and cloud particles and precipitation. Liou et al. [28] discuss the potential of
polarimetry in remote sensing of cirrus clouds, while Quinby-Hunt et al. [29],
Lumme [30], and Hoekstra and Sloot [31] describe multiple applications of po-
larimetry in remote sensing of the marine environment and in characterizing
interplanetary dust grains and biological microorganisms.

5 Acknowledgments

We thank Nadia Zakharova for help with graphics. This research was sup-
ported by the NASA EOS Program, NASA FIRE III Program, and NASA
GACP Program.



9 Polarization and Depolarization of Light 173

Fig. 12. Normalized Mueller matrix elements for a single latex bisphere in random
orientation. Solid curves show measurements by Bottiger et al. [2] and the dotted
curves show results of T-matrix computations.
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